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• Six Asynchronous  Design Principles: 
– Asynchronous Handshaking 
– Delay-insensitive Encoding 
– Completion Detection 
– Causal Acknowledgement 
– Full Indication and Early Evaluation 
– Time Comparison 

• Pros and Cons 
• (Some  of the) Models, Techniques and Tools for 

Asynchronous Design 
• Asynchronous control logic synthesis from Signal 

Transition Graphs 
 

Outline 
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Asynchronous Behaviour 

• Synchronous vs Asynchronous behaviour in general terms, 
examples: 

– Orchestra playing with vs without a conductor 

– Party of people having a set menu vs a la carte 

• Synchronous means all parts of the system acting globally in 
tact, even if some or all part ‘do nothing’ 

• Asynchronous means parts of the system act on demand 
rather than on global clock tick 

• Acting in computation and communication is, generally, 
changing the system state 

• Synchrony and Asynchrony can be in found in CPUs, 
Memory, Communications, SoCs, NoCs etc. 
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Key Principles of Asynchronous Design 

• Asynchronous handshaking 

• Delay-insensitive encoding 

• Completion detection 

• Causal acknowledgment (aka indication or 
indicatability) 

• Strong and weak causality (full indication and early 
evaluation) 

• “Time comparison” (synchronisation, arbitration) 
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Why and what is handshaking? 

Mutual Synchronisation is via Handshake 
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Synchronous clocking  

How we  
think 

What we  
design 
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Asynchronous handshaking  

 

 
What we  

design 

How we  
think 

Handshake latch 
Handshake CL ”Channel” or ”Link” 
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Handshake Signalling Protocols 

 Level Signalling (RTZ or 4-phase) 

Transition Signalling (NRZ or 2-phase) 

One cycle 

req 

ack 

req 

One cycle 

req 

ack 

One cycle 
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Why and what is delay-insensitive coding? 

Data Token = (Data Value, Validity Flag) 
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Bundled Data  

req 

ack 

Data 

One cycle 

req 

ack 

Data 

Return to Zero: 

Non-Return-to-Zero 

One cycle 

req 

ack 

Data 

One cycle 
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DI encoded data (Dual-Rail) 

ack 

Data.0 

One cycle 

Data.1 

ack 

Data.0 Data.1 

Logical 1 
Logical 0 

One cycle 

NULL (spacer) NULL 

cycle 

Data.1 

ack 

Data.0 
Logical 1 

Logical 0 

cycle cycle 

Logical 1 Logical 1 

cycle 

RTZ: 

NRZ: NRZ coding leads to 
complex logic 
implementation; 
special ways to track 
odd and even phases 
and logic values are 
needed, such as 
LEDR 10 



DI codes (1-of-n and m-of-n) 

• 1-of-4:  

– 0001=> 00, 0010=>01, 0100=>10, 1000=>11 

• 2-of-4: 

– 1100, 1010, 1001, 0110, 0101, 0011 – total 6 combinations 
(cf. 2-bit dual-rail – 4 comb.) 

• 3-of-6: 

– 111000, 110100, …, 000111 – total 20 combinations (can 
encode 4 bits +  4 control tokens) 

• 2-of-7: 

– 1100000, 1010000, …, 0000011 – total 21 combinations (4 
bits + 5 control tokens) 
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Why and what is completion detection? 

Signalling that the Transients are over 
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Bundled-data logic blocks   

Single-rail logic 

• 
• 
• 

• 
• 
• 

delay start done 

Conventional logic + matched delay 

Completion 
is implicit: 
by done 
signal 

The delay must 
scale with the worst 
case delay path,  
So … not really self-
timed 
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True completion detection  

Dual-rail  
logic 

• 
• 
• 

• 
• 
• 

C done 

Completion detection tree 

Completion 
detection for one 
dual-rail bit 

C 

• 
• 
• 

Multi-input C-
element 
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The Muller C element 

C 

A 

B 
Z 

A     B     Z+ 

0      0      0 

0      1      Z 

1      0      Z 

1      1      1 

Vdd 

Gnd 

A 

A 

A 

A B 

B 

B 

B 

Z 

Z 

Z 

[van Berkel 91] 

Static Logic 

Implementation 

C 
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C-element: Other implementations 

A 

A 

B 

B 

Gnd 

Vdd 

Z 

A 

A 

B 

B 

Gnd 

Vdd 

Z 

Weak inverter 

Quasi-Static Dynamic 



Why and what is causal acknowledgment? 

Every signal event must be acknowledged 
by another event 
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Causal acknowledgment 

a(0) 

b(0) 
c(0) 

x1 (1) 

x2 (1) 

x3(1) 

C-element implementation using simple gates 

a+ 

b+ 

x1- c+ 

x2- 

x1+ 

c- 

x3- 

a+ 

b+ 

a- 

b- 

c+ c- 

a- 

b- x2+ 

x3+ 

Unack’ed transitions x2- 
and x3- may cause a 
hazard on output c 

However, under Fundamental 
Mode (slow environment) the 
circuit is safe 
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Principle of causal acknowledgement 

a(0) 

b(0) 

c(0) 
x1(1) 

x4(0) 

x2(0) 

x3(1) 

a+ 

b+ 

a- 

b- 

c+ c- 

C-element implementation using simple gates 

a- 

b- 

x4- x3+ x2- c- 

a+ 

b+ 

x1- x2+ 
x3- x1+ c+ 

x4+ 

Each transition is 
causally ack’ed, 
hence no hazards 
can appear 
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Why and what are strong and weak causality ? 

Degree of necessity of precedence of some events for 
other events 
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Strong Causality  

• Petri net transitions synchronising as rendez-vous  

 

A 

C 

B 

• Logic circuits: Muller C-element (in 0-1 and 1-0 transitions), 
AND gate (in 0-1 transitions), OR gate (in 1-0 tranisitions) 

A     B     C+ 
0      0      0 
0      1      C 
1      0      C 
1      1      1 

Strong precedence 
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Weak Causality 

• Petri net transitions communicating via places 

A 

C 

B 

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1 
transitions) 

A(1->0) 

B(1->0) 

C(0) 
A(0->1) 

B(0->1) 

C(1) 

Weak precedence 
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Full indication versus Early Evaluation 

A.t 

A.f 

B.t 

B.f 

C.t 

C.f 

Dual-rail AND gate 
with “early propagation” 

Allows outputs to be produced from NULL 
to Codeword only when some (required) 
inputs have transitioned from NULL to 
Codeword  (similar for Codeword to NULL) 

C 

C 

C 

C 

B.t 

A.t 
C.t 

C.f 

A.t 

A.f 

A.f 

B.f 

B.t 

B.f 

Dual-rail AND gate 
with full input 
acknowledgement 
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Why and what is timing comparison? 

Telling if some event happened before 
another event 
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Synchronizers and arbiters 

Your system 

Input 

Your system 

Input 1 

Input 2 

  Synchronizer 

Decides which clock 
cycle to use for the  

input data 

  Asynchronous 
arbiter 

Decides the order of 
inputs 
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Metastability is.... 

Not being able to decide… 

Q 

Q 

Clock 

D 

tin 

tin -> 0 

D 

Clock 

Request 

Processor Clock 

Set-up time violated 
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Typical responses 

• We assume all starting points are equally probable 
• Most are a long way from the “balance point” 
• A few are very close and take a long time to resolve 

Clock 

Q Output 

Clock 

D Q 
#1  

Q Trigger 
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Synchronizer 

• t  is time allowed for the Q to change between CLK a and CLK b 

•   is the recovery time constant, usually the gain-bandwidth of the circuit 

• Tw is the “metastability window” (aperture around clock edge in which 
the capture of data edge causes a delay that is greater than normal 
propagation delay of the FF) 

•  and Tw depend on the circuit 

• We assume that all values of tin are equally probable 

D Q D Q 

CLK a 

VALID 

#1  #2 

dcw

t

ffT

e
MTBF

..

/


CLK b 
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Two-way arbiter (Mutual exclusion element) 

req1 

req2 

ack2 

ack1 

(0) 

(0) 

(1) 

(1) 

(0) 

(0) 

Basic arbitration element: Mutex (due to Seitz, 1979) 

An asynchronous data latch with 
metastability resolver can be built similarly 

Metastability 
resolver 
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• Understanding metastability is becoming very important as 
analogue and digital domains get closer, and timing 
uncertainty and PVT variations increase 

• Arbitration and synchronization are increasing their 
importance due to many-core, timing domains, NoCs, GALS 

• Design automation for metastability and synchronization is 
turning from research to practice (Blendix) 

Importance of Timing Comparison 
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Pros… 

• People have always been excited by asynchronous design, and motivated by: 

– Higher performance (work on average not worst case delays) 

– Lower power consumption (automatic fine-grain “clock” gating; 

automatic instantaneous stand-by at arbitrary granularity in time and 
function; distributed localized control; more architectural 
options/freedom; more freedom to scale the supply voltage) 

– Modularity (Timing is at interfaces)  

– Lower EMI and smoother Idd (the local “clocks” tend to tick at 

random points in time) 

– Low sensitivity to PVT variations (timing based on matched delays 
or even delay insensitive) 

– Secure chips (white noise current spectrum) 

– Plus, … a lot of scope and fun for research (there are many unexplored 
paths in this forest!) 
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• So why have async designers been often “crucified” in the past? 

– Overhead (area, speed, power) 

• Control and handshaking  

• Dual-rail and completion detection costs 

– Hard to design 
• yes and no, ... It’s different – there are very many styles and variants 

to go and one can easily get confused which is better 

– Very few **practical** CAD tools (but many academic tools) 

• Tools are quite specific to particular design styles and design niches; 
hence don’ t cover the whole spectrum 

• Complexity of timing and performance models   

• Difficulty with sign-off (for particular frequency requirements) 

•  ... But the situation is improving 

– Hard to Test  
• Possible, but not as mature as sync 

… Cons 
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Models and techniques for design 
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Models and techniques for asynchronous design 

• Models: 

– Delay model (inertial, pure, gate delay, wire delay, bounded and 
unbounded delays) 

– Models of environment (fundamental mode, input-output) 

– Models of switching behaviour (state-based, event-based, hybrid) 

• RTL level: 

– Data and control paths separate (data flow graphs, FSMs, Signal 
Transition Graphs, Synchronised Transitions) 

– Pipeline based (Combinational logic plus registers and latch controllers, 
e.g. micropipelines, gate-level pipelining) 

– Process-based (CSP-like, Balsa, Haste, Communicating Hardware 
Processes) 

• High-level models 

– Flow graphs (Marked graphs, extended MGs), Petri nets, Markov 
Chains 

– Behavioural HDLs (C, SystemC) 34 



Gate vs wire delay models 

• Gate delay model: delays in gates, no delays in wires 
 
 
 
 
 
 

• Wire delay model: delays in gates and wires 



Delay models for async. circuits 

• Bounded delays (BD): realistic for gates and wires. 

– Technology mapping is easy, verification is difficult 

• Speed independent (SI): Unbounded (pessimistic) 
delays for gates and “negligible” (optimistic) delays 
for wires. 

– Technology mapping is more difficult, verification 
is easy 

• Delay insensitive (DI): Unbounded (pessimistic) 
delays for gates and wires. 

– DI class (built out of basic gates) is almost empty 

• Quasi-delay insensitive (QDI): Delay insensitive 
except for critical wire forks (isochronic forks). 

– In practice it is the same as speed independent 

BD 

SI  QDI 

DI 
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Control Logic 
 

 

 

• Control specification based on Petri 
nets (Signal Transition graphs) 
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Control specification 

A+ 

B+ 

A- 

B- 

A 

B 

A input 

B output 

Timing Diagram Signal Transition Graph 

(STG) 
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Control specification 

A+ 

B+ 

A- 

B- 

A B 
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Control specification 

A+ 

B- 

A- 

B+ 

A B 
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Control specification 

A+ 

C- 

A- 

C+ 
A 

C 

B+ 

B- B 

C C 
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Control specification 

A+ 

C- 

A- 

C+ 

B+ 

B- 

C C C 

A 

B 
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VME bus example using Petri nets 

Device 

LDS 

LDTACK 

D 

DSr 

DSw 

DTACK 

VME Bus 
Controller 

Data 

Transceiver 

Bus 
DSr 

LDS 

LDTACK 

D 

DTACK 

Read Cycle 
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STG for the READ cycle 

LDS+ LDTACK+ D+ DTACK+ DSr- D- 

DTACK- 

LDS- LDTACK- 

DSr+ 

LDS 

LDTACK 

D 

DSr 

DTACK 

VME Bus 
Controller 



Choice: Read and Write cycles 

DSr+ 

LDS+ 

LDTACK+ 

D+ 

DTACK+ 

DSr- 

D- 

DTACK- 

LDS- 

LDTACK- 

DSw+ 

D+ 

LDS+ 

LDTACK+ 

D- 

DTACK+ 

DSw- 

DTACK- 

LDS- 

LDTACK- 
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Choice: Read and Write cycles 

DTACK- 

DSr+ 

LDS+ 

LDTACK+ 

D+ 

DTACK+ 

DSr- 

D- 

LDS- 

LDTACK- 

DSw+ 

D+ 

LDS+ 

LDTACK+ 

D- 

DTACK+ 

DSw- 46 



Workcraft tool 

• Workcraft is a software package for graphical edit, analysis, 
synthesis and visualisation of asynchronous circuit behaviour 

• Petrify plus a few other tools are part of it as plug-ins 

• It is based in Java tools 

• Can be downloaded from 
http://workcraft.org/wiki/doku.php?id=download 

• And installed in 10 minutes. 

• There is a simple to use tutorial for that 
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Some references 
• General Async Design: J. Sparsø and S.B. Furber, editors. Principles of 

Asynchronous Circuit Design, Kluwer Academic Publishers, 2001. (electronic 

version of a tutorial based on this book can be found on: 

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.p

df  

• Async Control Synthesis: J. Cortadella, M. Kishinevsky, A. Kondratyev, 

L. Lavagno, and A. Yakovlev. Logic Synthesis of Asynchronous Controllers 

and Interfaces. Springer-Verlag, 2002. (Petrify software can be downloaded 

from: http://www.lsi.upc.edu/~jordicf/petrify/)  

• Arbiters and Synchronizers: D.J. Kinniment, Synchronization and 

Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on arbitration 

and synchronization from  ASYNC/NOCS 2008 can be found: 

http://async.org.uk/async2008/async-nocs-slides/Tutorial-Monday/Kinniment-

ASYNC-2008-Tutorial.pdf)  

• Asynchronous on-chip interconnect:  John Bainbridge, Asynchronous 

System-on-Chip Interconnect, BCS Distinguished Dissertations, Springer-

Verlag, 2002 (electronic version of the PhD thesis can be  found on: 

http://intranet.cs.man.ac.uk/apt/publications/thesis/bainbridge00_phd.php)  
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• Simple examples 
1) xyz-controller 

2) Non-overlapping clock generator  

Looking inside Logic Synthesis 



x 

y 

z 

x+ 

x- 

y+ 

y- 

z+ 

z- 

Signal Transition Graph (STG) 

x 

y 

z 

xyz-example: Specification 
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x 

y 

z 

x+ 

x- 

y+ 

y- 

z+ 

z- 

Token flow 

51 



x+ 

x- 

y+ 

y- 

z+ 

z- 

xyz 

000 
x+ 

100 
y+ z+ 

z+ y+ 

101 110 

111 

x- 

x- 

001 

011 
y+ 

z- 

010 

y- 

State graph 
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x z x y  ( )

y z x 

z x y z  

Next-state functions 

xyz 

000 
x+ 

100 
y+ z+ 

z+ y+ 

101 110 

111 

x- 

x- 

001 

011 
y+ 

z- 

010 

y- 
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x 

z 

y 

Complex Gate netlist 

x z x y  ( )

y z x 

z x y z  
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Circuit synthesis 

• Goal: 

– Derive a hazard-free circuit 
under a given delay model and 
mode of operation 
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Speed independence 

• Delay model 

– Unbounded gate / environment delays 

– Certain wire delays shorter than certain paths in the 
circuit 
 

• Conditions for implementability: 

– Consistency 

– Complete State Coding 

– Persistency 
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Implementability conditions 

• Consistency 

– Rising and falling transitions of each signal alternate in 
any trace 
 

• Complete state coding (CSC) 

– Next-state functions correctly defined 
 

• Persistency 

– No event can be disabled by another event (unless they 
are both inputs) 
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Implementability conditions 

• Consistency + CSC + persistency 
 
 
 

• There exists a speed-independent circuit that implements 
the behavior of the STG 
 

(under the assumption that ay Boolean function can 
be implemented with one complex gate) 
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Persistency 

100 000 001 
a- c+ 

b+ b+ 

a 

c 
b 

a 

c 

b 

is this a pulse ? 

Speed independence  glitch-free output behavior under any delay 


