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Motivation

• Logic decomposition is one of the most 

difficult tasks in the design flow

• Much more difficult than for synchronous 

circuits – no guarantee of success

• The quality of the resulting circuit (in terms 

of area and latency) depends to a large 

extent on the way logic decomposition was 

performed
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Speed-independency assumptions

• Gates are atomic (so no internal hazards)

• Gates’ delays are positive and unbounded 

(and perhaps variable)

• Wire delays are negligible (SI) or, 

alternatively, wire forks are isochronic (QDI)
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Speed-independent decomposition
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Complex-gate implementation
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Naïve decomposition is hazardous
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Decompose at the level of STG
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Latch utilisation
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Logic decomposition algorithm

• Synthesise the circuit from the STG (several 

complex-gate and standard-C implementations 

are considered for each signal)

• Heuristically select a non-mappable gate, and 

a decomposition of this gate

• Insert a new signal into the STG for the sub-

function in the selected decomposition

• Repeat the above steps until all gates are 

mappable or no further progress is possible
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Function-guided signal insertion

Problem: given a Boolean function F, insert a new 

signal dec (i.e. a set of new transitions labelled 

dec+ or dec-) with the implementation [dec]=F

into the STG
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Transition insertions

Sequential pre-insertion Sequential post-insertion

Concurrent insertion
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Example: imec-sbuf-ram-write
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Generalised transition insertion
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Cost function

Parameterised by the user; takes into account:

• the delay introduced by the insertion

• the number of syntactic triggers of all non-
input signals

• the number of inserted transitions of a signal

• the number of signals which are not locked
with the newly inserted signal

• …
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Overcoming mapping failure

• Logic decomposition is not guaranteed to 
succeed, so tools occasionally fail

• May need to help the tools:

 methods & tricks

 “think outside the box” – knowledge of the 
environment, capacity to redesign the 
system and its environment

 “high-level understanding of the design” –
knowing the causal dependencies between 
the signals, which environment signals are 
fast/slow (useful for concurrency 
reduction), etc.

 relative timing assumptions
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0 Prevention is better than cure

• Large monolithic STGs are difficult, both for 
humans and for tools

• Hierarchical design:

 architectural decomposition into modules

 … until each module is small, say ~10 
signals (this size is about right for humans*

and tools)

 Advantages: human- and tool-friendly, 
more predictable, module re-use (within 
and between designs), easy to document 
and maintain, etc.

• Workcraft has support for hierarchical designs
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Example: stage of multiphase buck
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1 Expanding gate library

• Add a missing gate to the library

• Usually not an option 
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2 Inserting a useful signal

• Tools often fail because:

 some heuristic selects a bad sub-function

 there is no structural signal insertion to 
implement a useful sub-function

• One can help the tool by inserting an internal 
signal implementing a useful sub-function
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Example: OR5
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3.1 Simplifying the STG structure

• If the STG has complicated structure, it may 
be impossible to insert a signal structurally 
(e.g. one would have to merge and then split 
some choice branches for that)

• Try to simplify the STG structure by reducing 
the number of choice and merge (i.e. explicit) 
places, in particular controlled choices can 
often be removed
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Example: OR5
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3.2 STG re-synthesis

• Re-synthesis builds the state graph and then 
derives an equivalent STG from it, often with 
simpler structure

• Fully automatic, so easy to try if technology 
mapping fails

• Try various command-line options
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4 Concurrency reduction

• CR does not necessarily decrease 
performance – though events are less 
concurrent, the gates become smaller and 
some internal signals may become 
unnecessary

• CR may change the contract with the 
environment and introduce a deadlock or 
global deterioration of performance that is 
difficult to debug
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Example: xyz
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Example: xyz with CR
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Example: xyz with more CR



29

5 Relative timing assumptions

• Occasionally, the described techniques still 
fail to yield a solution

• Breaking up a large gate yields a non-speed-
independent decomposition

• The correct operation can then be ensured by 
relative timing assumptions

• This has implications for place&route

• Easy to make a mistake, need tool support
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Example: VME read phase

MaxDelay(x-) < MinDelay(d- → lds-)

MaxDelay(x-) < MinDelay(d- → dtack- → dsr+)
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Thank you!
Any questions?


