
Logic Decomposition of 

Asynchronous Circuits

in WORKCRAFT

Victor Khomenko, Danil Sokolov, Alex Yakovlev



2

Motivation

• Logic decomposition is one of the most 

difficult tasks in the design flow

• Much more difficult than for synchronous 

circuits – no guarantee of success

• The quality of the resulting circuit (in terms 

of area and latency) depends to a large 

extent on the way logic decomposition was 

performed



3

Speed-independency assumptions

• Gates are atomic (so no internal hazards)

• Gates’ delays are positive and unbounded 

(and perhaps variable)

• Wire delays are negligible (SI) or, 

alternatively, wire forks are isochronic (QDI)

F

instant

evaluator

delay

…



4

Speed-independent decomposition

G

…

H1

Hk

…
…

delay

delay

delay

F

instant

evaluator

delay

…



5

VME Bus Controller

D
ev

iceVME Bus

Controller

lds

ldtack

d

Data Transceiver

Bus

dsr

dtack

lds-d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+csc+

csc-



6

Complex-gate implementation

D
ev

ice

d

Data Transceiver

Bus

dsr

dtack
lds

ldtack

csc

May be not in the gate library 

and has to be decomposed



7

Naïve decomposition is hazardous

d

dsr

dtack
lds

ldtack

csc

x

lds-d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+csc+

csc-

Unexpected!

Unexpected!



8

Decompose at the level of STG

d

dsr

dtack
lds

ldtack

csc

dec

lds-d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+csc+

csc-

dec+

dec-

Insert a new signal dec whose 

implementation is [dec] = ldtack + cscMultiway acknowledgement



9

Latch utilisation

d

dsr

dtack
lds

ldtack

csc

d

dsr

dtack
lds

ldtack

csc
C

Only possible because there is no globally 

reachable state at which dsr=ldtack=0 and csc=1



10

Logic decomposition algorithm

• Synthesise the circuit from the STG (several 

complex-gate and standard-C implementations 

are considered for each signal)

• Heuristically select a non-mappable gate, and 

a decomposition of this gate

• Insert a new signal into the STG for the sub-

function in the selected decomposition

• Repeat the above steps until all gates are 

mappable or no further progress is possible



11

Function-guided signal insertion

Problem: given a Boolean function F, insert a new 

signal dec (i.e. a set of new transitions labelled 

dec+ or dec-) with the implementation [dec]=F

into the STG



12

Transition insertions

Sequential pre-insertion Sequential post-insertion

Concurrent insertion



13

Example: imec-sbuf-ram-write

dec+

dec-

dec

Implementation of prbar:

(csc2 req)  csc1  wsldin

imec-sbuf-ram-write
req

precharged

done

wsldin

wenin

prbar

wen

wsen

ack

wsld



14

Generalised transition insertion

s1

s2

s3

d1

d2

sources destinations

Sources and destinations are locked



15

Cost function

Parameterised by the user; takes into account:

• the delay introduced by the insertion

• the number of syntactic triggers of all non-
input signals

• the number of inserted transitions of a signal

• the number of signals which are not locked
with the newly inserted signal

• …



16

Overcoming mapping failure

• Logic decomposition is not guaranteed to 
succeed, so tools occasionally fail

• May need to help the tools:

 methods & tricks

 “think outside the box” – knowledge of the 
environment, capacity to redesign the 
system and its environment

 “high-level understanding of the design” –
knowing the causal dependencies between 
the signals, which environment signals are 
fast/slow (useful for concurrency 
reduction), etc.

 relative timing assumptions



17

0 Prevention is better than cure

• Large monolithic STGs are difficult, both for 
humans and for tools

• Hierarchical design:

 architectural decomposition into modules

 … until each module is small, say ~10 
signals (this size is about right for humans*

and tools)

 Advantages: human- and tool-friendly, 
more predictable, module re-use (within 
and between designs), easy to document 
and maintain, etc.

• Workcraft has support for hierarchical designs



18

Example: stage of multiphase buck



19

1 Expanding gate library

• Add a missing gate to the library

• Usually not an option 



20

2 Inserting a useful signal

• Tools often fail because:

 some heuristic selects a bad sub-function

 there is no structural signal insertion to 
implement a useful sub-function

• One can help the tool by inserting an internal 
signal implementing a useful sub-function



21

Example: OR5



22

3.1 Simplifying the STG structure

• If the STG has complicated structure, it may 
be impossible to insert a signal structurally 
(e.g. one would have to merge and then split 
some choice branches for that)

• Try to simplify the STG structure by reducing 
the number of choice and merge (i.e. explicit) 
places, in particular controlled choices can 
often be removed



23

Example: OR5



24

3.2 STG re-synthesis

• Re-synthesis builds the state graph and then 
derives an equivalent STG from it, often with 
simpler structure

• Fully automatic, so easy to try if technology 
mapping fails

• Try various command-line options



25

4 Concurrency reduction

• CR does not necessarily decrease 
performance – though events are less 
concurrent, the gates become smaller and 
some internal signals may become 
unnecessary

• CR may change the contract with the 
environment and introduce a deadlock or 
global deterioration of performance that is 
difficult to debug



26

Example: xyz



27

Example: xyz with CR



28

Example: xyz with more CR



29

5 Relative timing assumptions

• Occasionally, the described techniques still 
fail to yield a solution

• Breaking up a large gate yields a non-speed-
independent decomposition

• The correct operation can then be ensured by 
relative timing assumptions

• This has implications for place&route

• Easy to make a mistake, need tool support



30

Example: VME read phase

MaxDelay(x-) < MinDelay(d- → lds-)

MaxDelay(x-) < MinDelay(d- → dtack- → dsr+)



31

Thank you!
Any questions?


