
Logic decomposition and technology mapping
Logic decomposition is the process of breaking up large complex-gates into smaller ones, e.g. replacing a 3-
inputs AND gate with a pair of 2-inputs AND gates. Note that in contrast to synchronous circuits where
Boolean equivalence is sufficient to guarantee the correctness of logic decomposition, for asynchronous circuits
it is insufficient – e.g. the described decomposition of an AND gate may break the circuit.

Technology mapping is the process of assigning gates from a gate library to implement “abstract” (given as
Boolean functions) gates of the circuit.

In Workcraft, logic decomposition and technology mapping are always performed together and are combined
with synthesis. That is, given an STG, Workcraft can:

1. synthesise it

2. break up complex gates
3. map them to the gate library

as a single action, via the Synthesis→Technology mapping [MPSat] or Synthesis→Technology mapping
[Petrify] menu entries. In the rest of this tutorial, the term technology mapping will be used as a short-cut for
“synthesis, logic decomposition and technology mapping”.

Technology mapping in the context of asynchronous circuits is a complicated process that can
fail. In fact, it is an open problem whether every complex-gates synthesisable STG can always
be mapped to a fixed finite gate library (e.g. all gates with up to 2 inputs), and it is strongly
suspected that the answer is negative. In practice, Petrify and MPSat back-ends deploy various
heuristics to decompose the circuit, and occasionally fail.

This tutorial gives an introduction to technology mapping in Workcraft, and presents some techniques and tricks
to help the tool to succeed and produce a better circuit.

Example: VME bus controller (read phase)

Consider the following STG modelling the read phase of the VME bus controller (a more complete version of
VME bus controller can be found in Synthesis and verification of VME bus controller tutorial). Note that the
CSC conflicts in this STG have already been resolved with the help of internal signal csc.

STG for read phase of VME bus controller with resolved CSC conflict vme-read-csc.stg.work (3 KiB)

https://workcraft.org/tutorial/synthesis/vme/start
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/vme-read-csc.stg.work

Petrify back-end does not require CSC conflicts to be resolved, and if one attempts to
synthesise the circuit with CSC conflicts, it tries to resolve them before proceeding with the
synthesis. However, MPSat back-end does require CSC conflicts to be resolved prior to
synthesis, and fails if the STG has CSC conflicts. One can verify if an STG has CSC conflicts
via Verification→Complete State Coding (all cores) [MPSat]. CSC conflicts can be resolved,
either automatically via Tools→Encoding Conflicts→… or manually, see Resolution of
encoding (CSC) conflicts tutorial.

This STG can be synthesised using complex-gates, via Synthesis→Complex gate […], and the resulting circuit
is as follows (after manual layouting):

Complex-gate implementation vme-read-csc.circuit.work (4 KiB)

This circuit is not mapped yet, i.e. complex-gates are just Boolean functions of arbitrary size, e.g. they can be
not implementable by any library gate. In this case, however, the STG was tiny and all the gates in the circuit
are likely to be mappable to a realistic gate library.

Workcraft provides several gate libraries in the SIS genlib format, and the user can easily add a
new library. The default library is workcraft.lib, and it will be used below. However, it is
possible to tell Workcraft to use another library by amending the Gate library for technology
mapping setting in the Edit→Preferences… window under the Models→Digital Circuit leaf.

Complex-gate and standard-C syntheses are oblivious to the gate library – the implementations they yield are
Boolean functions of arbitrary complexity. These functions are often too large to be implemented by a single
gate available in the gate library. Unfortunately, breaking up a complex-gate into smaller ones, when performed
naïvely, generally yields an incorrect circuit – this happens due to the delays associated with the outputs of the
newly introduced gates. To illustrate this problem, suppose the gate library only has gates with up to two inputs.
One may try to break up the 3-input gate implementing csc in the above circuit into a 2-input bubble-OR gate
followed by a 2-input AND, as shown below, which would preserve the Boolean function computed by the gate.

Naïve decomposition of csc signal vme-read-csc-naive.circuit.work (4 KiB)

https://workcraft.org/tutorial/synthesis/csc-resolution/start
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/vme-read-csc.circuit.work
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/vme-read-csc-naive.circuit.work

This can be done by right-clicking this gate and selecting Split multi-level gate from the pop-up menu.
(Alternatively use Transformation→Split multi-level gates (selected or all) menu.) Unfortunately, the new delay
associated with the output of bubble-OR gate breaks the speed-independence of the circuit, and it no longer
satisfies the conformation and output persistency properties in the Verification menu.

Let us now try automatic decomposition. First, we need to restrict the default library to 2-input gates: In the
Edit→Preferences dialog, select External tools→MPSat synthesis and tick the Edit additional parameters
before every call checkbox. Then select Synthesis→Technology mapping [MPSat]. A dialog box will pop up
asking for extra command line parameters to pass to MPSat – type -g2 to restrict MPSat to gates/latches with at
most two inputs (see MPSat command line options for details). The following circuit (the layout was manually
improved) can then be synthesised (note that solution is not unique and you may get a slightly different one).

Technology mapping into 2-input gates vme-read-csc-mapped-celement.circuit.work (4 KiB)

The circuit is now mapped – the gate labels correspond to the gate names in the library. Interestingly, MPSat
replaced the 3-input gate with feedback by a latch. In fact, this replacement is not equivalent in the Boolean
sense – there is a difference when dsr=ldtack=0 and csc=1; however, no such state is reachable, so this
implementation is correct – this can (and should!) be formally verified using Verification menu.

It is impossible to find this mapping by considering only the original complex-gate circuit, as
the set of reachable states depends on both, the circuit and its environment, and the behaviour
of the environment cannot be deduced from the circuit. Hence the STG (representing the
contract between the circuit and its environment) plays a crucial role in asynchronous
synthesis.

Note that the inverter at the input of the C-element has a dotted line through, indicating that
there is a zero-delay assumption on it, i.e. it must be placed next to the C-element and its
worst-case delay should be smaller then any other gate delay. This is usually unproblematic as
long as such input inverters are placed next to the main gate, but in some situations this
assumption may be questionable; moreover, this assumption introduces extra constraints that
have to be satisfied during placing and routing. In this case this assumption is actually
superfluous: select this inverter, un-tick the Zero delay checkbox in the Property editor, and
verify the resulting circuit.

In this particular case no logic decomposition was necessary – the library happened to have a latch that would
directly (with an extra inverter) implement csc. Let us now restrict the library to 2-input gates and no latches, to
force MPSat to perform logic decomposition. Select Synthesis→Technology mapping [MPSat] and a dialog box
will pop up asking for extra command line parameters to pass to MPSat – type -g!2 (see MPSat command line
options for details). The following circuit (the layout was manually improved) can then be synthesised (note
that solution is not unique and you may get a slightly different one).

https://workcraft.org/help/mpsat
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/vme-read-csc-mapped-celement.circuit.work
https://workcraft.org/help/mpsat

Technology mapping into 2-input combinational gates vme-read-csc-mapped-2input.circuit.work (4 KiB)

This time the 3-input gate was decomposed into two 2-input gates, i.e. logic decomposition did occur. This
decomposition resembles (after reshuffling the bubbles) the incorrect naïve one described above, but in fact
there is an important difference: The output of the leftmost gate is now forked, so each transition of this gate is
acknowledged by (i.e. causes) a transition on one of the two gates it is driving. The principle that each signal
transition must be acknowledged is fundamental for speed-independent circuits, and its violation in the naïve
design described above was indicative of its incorrectness.

Do not forget to un-tick the Edit additional parameters before every call checkbox (unless you
want to be prompted for extra parameters every time MPSat synthesis is invoked).

Overcoming technology mapping failure

As was already explained above, technology mapping in the context of asynchronous circuits is a difficult
problem, and the tools occasionally fail to solve it. This section describes several techniques and tricks for
overcoming this problem.

Hierarchical design

An ounce of prevention is worth a pound of cure!

A common mistake of novice designers is to attempt creating a single large monolithic STG capturing the
behaviour of the whole system. The complexity of technology mapping (and of everything else) can be
significantly reduced if one acts early on and uses hierarchical decomposition of a complex design into smaller
modules (communicating e.g. by handshakes), which are decomposed into even smaller modules, etc., until the
terminal modules are small enough (e.g. have only a handful of signals – if a module has more than 10-12
signals it usually should be decomposed). As an example, consider the following hierarchy for a single phase of
a multi-phase buck controller [1]:

https://workcraft.org/_media/tutorial/synthesis/technology_mapping/vme-read-csc-mapped-2input.circuit.work

- asynchronous arbitration primitives

- synthesised SI components

- external delay elements

The following tutorials illustrate this approach:

Hierarchical design of a realistic buck controller.

Verification and synthesis of hierarchical designs.

The hierarchical approach has a number of important advantages:

Hierarchical designs are easier to comprehend, document, explain to other people, and maintain. They
also look better than large monolithic STGs on PowerPoint slides.
Designing several small STGs is almost always simpler than designing a large monolithic one – and also
reduces the risk that the STG does something unexpected.

It is often the case that some of the modules can be re-used within a design (or even by different
designs); hierarchical approach helps identifying such reusable components.
Hierarchical design avoids creating large monolithic STGs, which are difficult for the tools to synthesise.
It should be stressed that if one sets out to create a large monolithic STG, technology mapping is almost
certainly will be a major challenge.

Partitioning a module into smaller ones in a meaningful way is a creative problem. A possible approach could
be:

Think of the output signals of the module as “what the module computes”.

Partition the output signals into two (or more) sets – hopefully, in a meaningful way, so that “related”
outputs are kept together; from each of these sets a new sub-module will be created.

The set of signals in each sub-module has to be iteratively expanded by including any signal that triggers
or is in the choice relationship with an already included output signal. (Choices involving outputs violate
output persistency, so it's mostly about keeping a mutex's outputs in the same module.) The triggering
signals become inputs of the module: It is ok to share the module inputs between several sub-modules,
and an output of one sub-module could be an input of 0 or more other sub-modules, but no signal can be
an output of more than one sub-module.
If you had to include all (or most) outputs of one sub-module into another, you may merge the former
sub-module into the latter one.

Some extra communication between the sub-modules may be required, e.g. new handshakes. If several
modules form a token ring, it may be possible to use one signal per link rather than a handshake, e.g. see
the example in Verification and synthesis of hierarchical designs.

One would wish the hierarchical approach to eliminate the problems during technology mapping, making it
fully automatic. However, there are still practical situations when one has to help the tools:

https://workcraft.org/tutorial/synthesis/decomposition/start
https://workcraft.org/tutorial/synthesis/composition/start
https://workcraft.org/tutorial/synthesis/composition/start

“I see the light and will always follow the hierarchical approach from now on, but I have several large
monolithic STGs from my dark past, which must be mapped by tomorrow.”

“I inherited a large monolithic STG from another designer.”
“I cannot think of any meaningful way to decompose this module.”

“I faithfully followed the hierarchical approach, but the tools still failed on a relatively small module.”
Etc.

The rest of this section is describing various tips and tricks which may help in such situations. There is still no
guarantee of success, so the ultimate fall-back position is appealing to the designer's “high-level understanding
of the system”, “creativity”, and the ability to “think outside the box”.

Expanding the gate library

Consider the following STG specifying a 5-input OR function with mutually exclusive inputs:

STG for 5-input OR function or5.stg.work (4 KiB)

The complex-gate implementation is a 5-input OR gate as expected, but Workcraft's default gate library does
not have an OR5 gate, and both Petrify and MPSat fail to decompose this example. If extending the gate library
is an option, one can just add an OR5 gate to it. Unfortunately, expanding the library is rarely an option.

Insertion of helper internal signals

Logic decomposition is the most difficult part of the process, and technology mapping (in the narrow sense) is
simple once logic decomposition succeeds in breaking up the gates into ones directly mappable to the gate
library. The tools perform logic decomposition at the level of the STG, by adding internal signals corresponding
to various sub-functions of complex-gates. This process heavily relies on heuristics, so a designer can help the
tool by inserting a new internal signal implementing some useful sub-function. (Tutorial Resolution of encoding
(CSC) conflicts explains how to insert internal signals into an STG.)

The reason why Petrify fails for the above STG is unclear (probably some unlucky application of a heuristic).
The reason for MPSat's failure is that it inserts signals structurally into the STG, and only a restricted classes of
insertions are possible, all of which happen to be not applicable to this STG. The designer can help the tool by
inserting a signal to split off a 3-input OR function, as shown below. Signal map can then be implemented as
OR3(in1,in2,in3), and then out can be implemented as OR3(map,in4,in5), and the tools now easily find this
implementation.

https://workcraft.org/_media/tutorial/synthesis/technology_mapping/or5.stg.work
https://workcraft.org/tutorial/synthesis/csc-resolution/start#signal_insertion

Simplified STG for 5-input OR or5-simple-
structure.stg.work (4 KiB)

Simplified STG for 5-input OR with a proxy place
or5-simple-structure-proxy.stg.work (4 KiB)

STG for 5-input OR function with helper map signal or5-split.stg.work (4 KiB)

Simplifying STG structure

Another important approach is to simplify the structure of the STG by reducing the number of choice and merge
places – this will help MPSat that uses structural insertions. The 5-input OR STG above has quite a contrived
structure, with several choice and merge places. The place at the top models free choice between the inputs – it
is essential, so one has to keep it. The following merge place is used only to execute a single output transition,
and is immediately followed by a controlled choice place, with the extra parallel arcs between input transitions
to keep track of the current branch. One can simplify the structure considerably, by replicating transitions of
out, removing also the final merge place. Note that both STGs below are semantically identical, but the one on
the right uses a proxy place (this feature is accessible from the Transformations menu) to improve the layout.
Now both Petrify and MPSat have no difficulty mapping this simplified STG.

STG re-synthesis

STG re-synthesis is an automatic process involving building the state graph of the given STG and then deriving
an equivalent STG from this state graph. This may simplify the structure of the STG, so it is related to the
above approach. Note that the resulting STG is not necessarily the simplest possible one, e.g. for the OR5
example re-synthesis derives an STG with two non-implicit places, which still cannot be automatically mapped.

https://workcraft.org/_media/tutorial/synthesis/technology_mapping/or5-simple-structure.stg.work
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/or5-simple-structure-proxy.stg.work
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/or5-split.stg.work

Nevertheless, when technology mapping fails, you may try to push your luck by re-synthesising the STG and
mapping the result. For example, consider the following STG (an early version of the design in [2] that did not
make it to the paper):

STG for master module of SRAM controller master-read-write-interface.stg.work (8 KiB)

This STG has a rather contrived structure with many choice and merge places, and also has four dummy
transitions (dummies are generally ‘difficult’ for some of the synthesis and verification tasks in Workcraft). Not
surprisingly, MPSat fails to map this circuit; Petrify at first seems to succeed, but the resulting circuit has gates
with disconnected pins and fails the verification (looks like a bug in the tool).

Let us try to re-synthesise this circuit, removing also the dummies. This can be done by selecting the four
dummy transitions with the mouse while holding Shift , and then choosing Conversion → Net synthesis hiding
selected signals and dummies [Petrify with -er option] (the -er option tells the tool to create different
transitions for instances of the same signal if their excitation regions in the state graph are disjoint – this often
helps to simplify the structure; occasionally, a similar command without -er is also helpful, so you may try that
as well). The resulting STG is shown below (note that you may get a slightly different one, or layout may
change) – its structure is much less contrived (fewer choice and merge places) and there are no dummies. Now
MPSat has no difficulty completing technology mapping, and the resulting circuit passes verification, both wrt.
the re-synthesised STG and wrt. the original one (except that Workcraft complains that output persistency
cannot be checked due to dummies). Note that you can set the STG to check the circuit with in the Property
editor.

https://workcraft.org/_media/tutorial/synthesis/technology_mapping/master-read-write-interface.stg.work

Concurrency reduction

Concurrency reduction is another useful technique that was explained in the Resolution of encoding (CSC)
conflicts tutorial. However, it can be applied not only for CSC resolution, but also for simplifying the circuit,
which may help technology mapping. As an example, consider the control logic of WAITX [3] – an element
from the family of Asynchronous Arbitration Primitives.

The STG for this controller is shown below – note that internal signal csc and two concurrency reductions (the
amber arcs) were used to solve the CSC conflicts. The complex-gate implementation has gates with up to eight
inputs. Even though automatic technology mapping succeeds, the resulting circuit is not particularly good – the
circuit's area is large (220 units for MPSat and 228 for Petrify – you may get different results), with several
large gates.

STG for WAITX with resolved CSC conflicts waitx.stg.work (6 KiB)

The following STG shows how to add two more concurrency reductions – the “high-level understanding of the
design” allows one to conclude that these concurrency reductions are unlikely to harm the performance. The
modified STG turns out to be much easier to map and the circuit is better (the area is 156 units for MPSat and
152 for Petrify – you may get different results) with much smaller gates (the circuit in [3] was then slightly
improved manually).

STG for WAITX simplified by concurrency reduction waitx-cr.stg.work (6 KiB)

STG decomposition

Occasionally one has no choice but re-designing the given large STG as a composition of smaller ones, as
described in the Hierarchical design section above. This is a creative process that requires deep understanding

https://workcraft.org/tutorial/synthesis/csc-resolution/start#concurrency_reduction
https://workcraft.org/a2a/start
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/waitx.stg.work
https://workcraft.org/_media/tutorial/synthesis/technology_mapping/waitx-cr.stg.work
https://workcraft.org/tutorial/synthesis/technology_mapping/start#hierarchical_design

of the design, though DesiJ [https://github.com/hpiasg/desij] tool can assist the designer, and even automatically
create a set of mappable sub-modules in some lucky cases.

Non-speed-independent decomposition with relative timing assumptions

If the approaches outlined above fail or not applicable, one can map the circuit by doing non-speed-independent
decomposition, and rely on timing to guarantee correctness. Relative timing assumptions (RTA) were explained
in the Resolution of encoding (CSC) conflicts tutorial.

RTAs can be a real help, but they do require a lot of care as it is easy to make a mistake, and
they have to be taken into account at the place-and-route stage of the circuit design.

For example, let us re-consider the naïve decomposition of the VME bus controller introduced above:

This decomposition is not speed-independent, i.e. various correctness properties will be violated under certain
gate delays, in particular if the gate implementing x is relatively slow (or there is a long wire from it to gate
csc). However, it may be possible to eliminate all the violations by ensuring that the gate delays are such that
no violation trace can happen due to timing, in this case by ensuring that x is relatively fast. Indeed, this design
was obtained from a correct complex-gate implementation by splitting an atomic 3-input gate implementing csc
into two 2-input gates, x and csc, and the violations are due to the new delay associated with gate x – this delay
did not exist when the corresponding sub-function was inside the 3-input complex-gate regarded as atomic.
Intuitively, if this delay is sufficiently short (e.g. shorter than the shortest possible delay of any other gate in the
circuit, though less stringent constraints can often be derived by careful analysis), the two gates will behave as a
single atomic complex-gate. This consideration motivates the use of zero-delay inverters – these are usually the
fastest gates in the library, but one has still to be careful and place them next to the main gate. However, for
more complicated gates careful timing analysis is necessary to derive less stringent RTAs, e.g. for this circuit
one can show that the following two RTAs are sufficient to guarantee its correctness:

MaxDelay(x-) < MinDelay(d- → lds-)

MaxDelay(x-) < MinDelay(d- → dtack- → dsr+)

Note that timing analysis required to obtain these constraints is non-trivial and is beyond the scope of this
tutorial.

[1] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, A. Yakovlev: Benefits of Asynchronous
Control for Analog Electronics: Multiphase Buck Case Study [https://doi.org/10.23919/DATE.2017.7927276]. Proc.
DATE (2017).
[2] V. Khomenko, A. Mokhov, D. Sokolov, A. Yakovlev: Formal Design and Verification of an Asynchronous
SRAM Controller [https://doi.org/10.1109/ACSD.2017.12]. Proc. ACSD (2017) 59-67.
[3] V. Khomenko, D. Sokolov, A. Mokhov, A. Yakovlev: WAITX: An Arbiter for Non-Persistent Signals
[http://dx.doi.org/10.1109/ASYNC.2017.8]. Proc. ASYNC (2017) 33–40.

https://github.com/hpiasg/desij
https://workcraft.org/tutorial/synthesis/csc-resolution/start#relative_timing_assumptions
https://doi.org/10.23919/DATE.2017.7927276
https://doi.org/10.1109/ACSD.2017.12
http://dx.doi.org/10.1109/ASYNC.2017.8

