
Logic Synthesis and

Implementation Styles in

Asynchronous Circuits Design

Victor.Khomenko@ncl.ac.uk

School of Computing Science,

Newcastle University, UK

2

Speed-independence assumptions

• Gates/latches are atomic (so no internal hazards)

• Gate delays are positive and finite, but variable

and unbounded

• Wire delays are negligible (SI)

• Alternatively, [some] wire forks are isochronic

(QDI), i.e. wire delays can be added to gate delays

F

instant

evaluator

delay

…

3

SI decomposition

G

…

H1

Hk

…
…

delay

delay

delay

F

instant

evaluator

delay

…

Hazards can be

introduced due to

these delays!

4

Gates & latches

• Good citizens: unate gates/latches, e.g. BUFFER,
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch

 Output inverters (‘bubbles’) can be used
liberally, e.g. NAND, NOR, as the invertor’s
delay can be added to the gate’s delay

 Input inverters are suspect as they introduce
delays, but in practice are ok if the wire
between the inverter and the gate is short

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch – may have internal hazards, but may still be
useful

5

Logic synthesis

• Encoding (CSC) conflicts must be resolved first

• Several kinds of implementation can then be

derived automatically:

 complex-gate (CG)

 generalised C-element (gC)

 standard-C implementation (stdC)

• Can mix implementation styles on per-signal

basis

• Logic decomposition may still be required if the

gates are too complex

6

Example: complex-gate synthesis

Code Nxtc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
1
0
0
1
1
1
-

Eqn (a+c)b+d¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

)()()(sOutsCodesNxt zzz 
a
b (a+c)b+d¯ cd

The size of this Boolean

expression is not limited!

7

Support, triggers and context
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

a
b (a+c)b+d¯ cd

Signals that are the inputs
of the gate producing a
signal form its support,
e.g. the support of c is
{a,b,c,d}. Supports are not
unique in general.

Signals whose occurrence
can immediately enable a
signal are called its triggers,
e.g. the triggers of c are {b,d}.
Triggers are unique, and are
always in the support.

Signals in the support which
are not triggers are called the
context, e.g. the context of c is
{a,c}. Context is not unique in
general.

support = triggers + context

8

Example: gC implementation

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

Eqn ab+d b¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101









































otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)(sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a
b
d

ab+d¯

cС

b b

+

–

Implemented as pull-up and pull-down networks of

transistors + ‘keeper’; assumed to be atomic; risk

of transient short-circuit during initialisation

9

Example: stdC implementation
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

‘Monotonic cover’

constraints

Eqn abc+d b̄¯

b b

cС

a
b
d

ab+d¯

hazard due to

a new delay
¯

b b

cС

a
b
d

abc+d¯ ¯

10

Logic Decomposition

• Often complex-gates are too complex to be mapped to

a gate library, and so logic decomposition is required

• Cannot naïvely break up complex-gates – this is likely

to introduce hazards (at least, timing assumptions are

required)

• Decomposition is one of the most difficult tasks – no

guarantee that automatic decomposition will succeed

• Online tutorial on logic decomposition and technology

mapping:

https://workcraft.org/tutorial/synthesis/technology_mapping/start

