;25 Newcastle
University

Logic Synthesis and
Implementation Styles In
Asynchronous Circuits Design

Victor.Khomenko@ncl.ac.uk
School of Computing Science,
Newcastle University, UK

Speed-independence assumptions

« Gates/latches are atomic (so no internal hazards)

————————————————

|

m |

=, | instant
|

|
—+—| evaluator :

 Gate delays are positive and finite, but variable
and unbounded

 Wire delays are negligible (SI)

« Alternatively, [some] wire forks are isochronic
(QDI), i.e. wire delays can be added to gate delays

2

S| decomposition

—+—| evaluator

Hazards can be
Introduced due to
these delays!

1
n | I
. | | instant

1

Gates & latches

Good citizens: unate gates/latches, e.g. BUFFER,
AND, OR, NAND, NOR, AND-OR, OR-AND, C-
element, SR-latch, RS-latch

= Output inverters (‘bubbles’) can be used
liberally, e.g. NAND, NOR, as the invertor’s
delay can be added to the gate’s delay

= |nput inverters are suspect as they introduce
delays, but in practice are ok if the wire
between the inverter and the gate is short

Suspects: binate gates, e.g. XOR, NXOR, MUX, D-
latch — may have internal hazards, but may still be
useful

Logic synthesis

 Encoding (CSC) conflicts must be resolved first

« Several kinds of implementation can then be
derived automatically:

= complex-gate (CG)
= generalised C-element (gC)
» standard-C implementation (stdC)

« Can mix implementation styles on per-signal
basis

 Logic decomposition may still be required if the
gates are too complex

Example: complex-gate synthesis

b+ a+ 1000
0100 7~ Yoooo]

Code

0100
0000
C+ C- b+ 1000
0110

Y - Y 0010
0110 ¢—>=—0 $1100 1700

0010 1110
1111

a- d+ 1101
else

2
»
ﬁ

Ir'rPrPRPOOROOHRK

- + Y
d o< C)

1110 o Eqn
1111 1101

(a+c)b+d

NXt, (3) = Code, (S) DOUL, (S) [ozrerpradr c

+d
haal //f
The size of this Boolean
expression is not limited!

Support, triggers and context
@ o— 2t)01000

Q= —
0100 ~— A 0000 8_ ~ -
d— (a+c) b+d C
Cc+ C- b+
) Signals that are the inputs
Y Y .
0110 © @ >0 0 1100 of the gate producing a
\ 0010 signal form its support,
e.g. the support of c is
a- Q@ {a,b,c,d}. Supports are not
9 unique In general.
ot oLt &
1110 1111 1101
Signals whose occurrence Signals in the support which
can immediately enable a are not triggers are called the

signal are called its triggers, context, e.g. the context of c is

e.g. the triggers of ¢ are {b,d}. {a,c}. Context is not unique in
Triggers are unique, and are general.
always in the support. support = triggers + context

Example: gC implementation

O< b+ o— 2")01000 Code | Set_| Reset_
0100 4 0000 0100 | 1 0
0000 0 -
i 1000 | O -
CF ¢ b+ 0110 | - 0
V) V 0010 | O 1
0110 © >0 01100 [1100| © -
A 0010 1110 | - 0
1111 - 0
a- d+ 1101 | 1 0
else - -
d- C+ Y
O=< O O Eqn |ab+d b
1110 1111 1101
(1 if Out_(s)=1 (1 if Out,_ (s)=1
a— _
Set,(s)=40 if Nxt,(s)=0 Reset (s)=40 if Nxt,(s)=1 8: ab+d >
|— otherwise (— otherwise
Implemented as pull-up and pull-down networks of
transistors + ‘keeper’; assumed to be atomic; risk b—1 b

of transient short-circuit during initialisation

Example: stdC implementation

O-= b+ ’ at)01000 Code | Set_. |[Reset,
0100 0000 0100 1 0
0000 0 -
1000 0 -
e “ o+ 0110 | - 0
Y _] 0010 0 1
0110 © >0 0 1100 1100 0 -
\ 0010 1110 - 0
1111 - 0
a- d+ 1101 1 0
else - -
d- O-= Ct (Y) ‘Monotonic cover’
1110 1111 1101 constraints
a> hazard gulea to Eqn |3bs+d| B
A a new delay A7 Fhc+d
d— d_
C — C
sy b— b

Logic Decomposition

Often complex-gates are too complex to be mapped to
a gate library, and so logic decomposition is required

Cannot naively break up complex-gates — this is likely
to introduce hazards (at least, timing assumptions are
required)

Decomposition is one of the most difficult tasks — no
guarantee that automatic decomposition will succeed

Online tutorial on logic decomposition and technology
mapping:
https://workcraft.org/tutorial/synthesis/technology mapping/start

10

