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nterrupt handler problem from Philips - 1996

Interrupt Handler

Our second problem is a simplified version of an interrupt handler as jg

f .
amongst other applications, mic! sllers ound g

Problem Specification

My solution: abstract

Interface:

* ris an input (reset); the handler into 8 one-Bit
[¢] registers events on input
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rbitrated (using a mutual
n arrival of either b, or 7.
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the BH[i] and CC are

* a.0 .. a.7 are inputs;

b 1

* b is an 8-bit output, passive handshake

— the data is single-rail encoded in output wires b.j, (0 < j < 8);
— the handshake is 4-phase along wire pair (br, bk);
— wires b.j must be stable ("data valid”) when bk is high;
* ¢ = (cr,ck) is an undirected ("nonput”), passive, 4-phase handshake channel

The interrupt handler is reset into its initial state when r is high, and starts handling
interrupts after r has gone low. (Inputs br and cr are low when r is high.) Then it
must be prepared for two kinds of request:

1. b, : Return an 8-bit interrupt vector: bit b.j indicates that at least ¢
transition has occurred on a.j since reset or since the previous request
b. Note that during the data-valid interval of channel b the data WireS
must be stable whereas the input wires a.j may change.

2. ¢, : Wait until a transition has occurred on one of the input Wires ':1'0' ¢
Since reset or since previous request along b); then complete the han!
ong c.

S ) ive:
For simplicity we assume that handshakes along b and c are mutually exci ol
We are interested in a low-power solution. Hence, there should be no ¥
activity when the handler is in one of its quiescent states.
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Towards Petri net specification
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Overall structure

a.0 a.”7
\L b.0 \b b.7
BHO = BH7 —
CC

o BHO,..., BH7 are one-bit han-

o ('C IS a coordination-
synchronisation circuit



One-bit handler: Basic Structure
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Basic schedule for the execution of command b

none
i (t.1=0) none
br+ = bimn+ >>—bout 1+ = bk+ —= bin- bout.i- = bk-
b.1 <=t.1 b1- b.1-
(t.1=1)

Critical section (t.1 must be stable)

T he critical section must be organised via mutual exclusion between

latching events on a.: into t: and processing b



Basic STG for command b
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Timing assumption: T he minimal interval between two adjacent changes
of interupt signal a.: should be at least equal to the delay of the Mutex

element and latch for t.



Basic STG for command ¢

Important:
e Signal c.k is produced as soon
as at least one of {1 Is set to
1 — this requires the gloabal
signal t¢ =t0+4 ...+ 1.7.
e Ack-ing signal {g may be
a problem for pure speed-

independence (tg must be in-
cluded into the STG specifi-
cation).



Basic STG for command r

Timing assumption:

a~ — - r1l+ 2+ rin+
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Implementation of one-bit handler
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Implementation of Coordination Circuit
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T his circuit is not speed-independent wrt OR gate for tg
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Speed-independent design (for two bit handlers)

Output from petrify:

[bk] = bout*g2t + br*bk;

[ck] = cr*tg;

[t1] = 1gl12%tl + gll + til*bin;

[t2] = 1g22%t2 + g21 + t2+bin;

[tg]l = t1 + t2;

[b1] = br*bl + tgkbl + !r*gl2+tl;
[b2] = br*b2 + tg*b2 + !r*g22+t2;
[bin] = I!bk*bin + br*!bk#*!g2t;
[boutl] = gi2*!ti*bin + bi;

[r11] = al*lsil + lal*si = XOR(al,sl);
[r21] = a2*!s2 + la2*¥s2 = X0R(a2,s2);
[ri2] = r + bout + bin;

[r22] = r + bout + bin;

[bout2] = g22#!t2*bin + b2;

[bout] = boutli*bout + boutl*bout2 + bout2*bout;
[g2t] = g22%g2t + gl2*g22 + gl2+g2t = C(gl2,g22);
[s1] = al*glliktl*xtg + !tgxsl + !gli*sl + !tl*sl;
[s2] = a2+g21l*t2*tg + !tg*s2 + lg2l*s2 + |t2%s2;



Speed-independent design with C-gates (for two bit handlers)

Output from petrify:

[bk_C1] = bout*g2t; [bk_C2] = br;
[ck] = cr+*tg;
[t1_C1] = gl1; [t1_C2]

It1 + 1r12 + lg2t + bin;

[t2_C1] = g21; [t2_C2] = 1t2 + !r22 + !g2t + bin;
[tg]l = t1 + t2;

[b1_C1] = gl2*t1*bin; [b1_C2] = 1!bl + br + ti;
[b2_C1] = g22+%t2*bin; [b2_C2] = 1!b2 + br + t2;
[bin_C1] = br*!bk*!g2t; [bin_C2] = !'bk;

[boutl] = bl + gl2*!tl*bin;

[r11] = lal*sl + al#*!si;

[r12] = r + bout + bin;

[bout2] = b2 + g22*!t2*bin;

[bout_aux_C1] = boutl; [bout_aux_C2] = bout?2
[bout] = bout_aux + bout * tg;

[r21] = l'a2*s2 + a2*!s2;

[r22] = r + bout + bin;

[g2t_C1] = g22; [g2t_C2] = gl12;

[s1_C1] = al*glixtixtg; [s1_C2] = lgii + It1 + ltg + al;

[s2_C1] = al2*g21#t2%tg; [s2_C2] = !'g21 + 't2 + ltg + a2;
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Remarks on speed-independence

e Transitions of the OR-gate for t¢ must be ack-ed in both b and r
commands

e Neither of BIH is allowed to leave the critical region until ALL of
them completed it — hence synchronisation of g2 on ¢2t

e The last solution allows resetting of the Mutex’'es on (r2,¢2) only
after all b.: are reset — this means a slight delay in latching events
on a. into tz (the latter waits for release of Mutex).



