Interrupt handler design with
Petri nets, STGs and Petrity

Vintage 1996

Alex Yakovlev
(slides made by copying old slides from pdfs)

July 2019

nterrupt handler problem from Philips - 1996

Interrupt Handler

Our second problem is a simplified version of an interrupt handler as jg

f .
amongst other applications, mic! sllers ound g

Problem Specification

My solution: abstract

Interface:

* ris an input (reset); the handler into 8 one-Bit
[¢] registers events on input
transition occurs on a.7
rbitrated (using a mutual
n arrival of either b, or 7.
o the b.7 (vector) wires.
oducing the ack-outputs

ents, such as (1) being
mple “non-busy wait”),
the BH[i] and CC are

* a.0 .. a.7 are inputs;

b 1

* b is an 8-bit output, passive handshake

— the data is single-rail encoded in output wires b.j, (0 < j < 8);
— the handshake is 4-phase along wire pair (br, bk);
— wires b.j must be stable ("data valid”) when bk is high;
* ¢ = (cr,ck) is an undirected ("nonput”), passive, 4-phase handshake channel

The interrupt handler is reset into its initial state when r is high, and starts handling
interrupts after r has gone low. (Inputs br and cr are low when r is high.) Then it
must be prepared for two kinds of request:

1. b, : Return an 8-bit interrupt vector: bit b.j indicates that at least ¢
transition has occurred on a.j since reset or since the previous request
b. Note that during the data-valid interval of channel b the data WireS
must be stable whereas the input wires a.j may change.

2. ¢, : Wait until a transition has occurred on one of the input Wires ':1'0' ¢
Since reset or since previous request along b); then complete the han!
ong c.

S) ive:
For simplicity we assume that handshakes along b and c are mutually exci ol
We are interested in a low-power solution. Hence, there should be no ¥
activity when the handler is in one of its quiescent states.

S)
h"" ;
i

Towards Petri net specification

a.0~/1 ---a.7-/1

>/

ck+ —

Cr-
A V
cr+ ck-

v br+ bk+——== br- bk-
Idle \G/

Idle

a.1~/1 a.1~/

TW
dum dum

)
o

Idle

)

Overall structure

a.0 a.”7
\L b.0 \b b.7
BHO = BH7 —
CC

o BHO,..., BH7 are one-bit han-

o ('C IS a coordination-
synchronisation circuit

One-bit handler: Basic Structure

Elll
bin _ | DI
rin _| BHi Basic Action:
br_ - '
i e Latch event on «a: Into t.: before br
bouti | |ti (aux.) or r
cc o Collect ¢« via OR logic to produce
— =] ck upon cr
A e Rewrite t.i into bi upon br, reset t.:

cr ¢k

Basic schedule for the execution of command b

none
i (t.1=0) none
br+ = bimn+ >>—bout 1+ = bk+ —= bin- bout.i- = bk-
b.1 <=t.1 b1- b.1-
(t.1=1)

Critical section (t.1 must be stable)

T he critical section must be organised via mutual exclusion between

latching events on a.: into t: and processing b

Basic STG for command b

me
a~ rl+ =) — I2t= bint+ ~_
l e A N\, \
/ A h brt+
] gl+ S0 g2+ . N
(N —— .,
l ° Y
Yy =T x | A bkt \\
Z\}._-ﬁ""":ll,.:,r,‘ ‘I;:.,_L_MHH <|-fr - — I__’__/'I_ = >;_\I Idle
F a4 ,.r"' | .I Th, -~ T f ®
dum t+_ | tl '| bout+ b+ f j \
e B . P ' /
| TN L — X7 ~—br- [/}
y - | N v
'\}—:' | ,f)\\ bout+ | rt ert
| | /N) ¢
. R A~
S | | bul_ R - X//
| | | | dl‘l:’_tfl b
| - | 2- S~ bk-
| . o
\ / | o
el 2|
N ~— N ~ bout-

Timing assumption: T he minimal interval between two adjacent changes
of interupt signal a.: should be at least equal to the delay of the Mutex

element and latch for t.

Basic STG for command ¢

Important:
e Signal c.k is produced as soon
as at least one of {1 Is set to
1 — this requires the gloabal
signal t¢ =t0+4 ...+ 1.7.
e Ack-ing signal {g may be
a problem for pure speed-

independence (tg must be in-
cluded into the STG specifi-
cation).

Basic STG for command r

Timing assumption:

a~ — - r1l+ 2+ rin+
1/ / \ \E___ | e The minimal interval be-
! L A0 J_. < tween r+ and r— should be
M/ _ \:Q?\x'%r\ \‘w Ldle - - r+ r . .
o v fam ot '}!’q—-*w sufficient for the circuit to
}_3/ | ”‘1—3'4#' }f”’f bre reset its latches t.i (includ-
i |! | nf iIng Mutex delays.
' rll- "Il \ l e Internally we may imple-
\\ P _ /"ﬁ ment handshake rn and

rout (similar to in and bout)

Implementation of one-bit handler

1L
/

a.l

L ——

N

|
AN

bin

me

»—

2\x>_4 t1 N
K/ -/

b.1

[.

Implementation of Coordination Circuit

br 4—:1:)71)111
Oam
I S
t.0 tg
: '
t.7 —

bout.0

j) bout
bout.7

T his circuit is not speed-independent wrt OR gate for tg

: ck

Cr

Speed-independent design (for two bit handlers)

Output from petrify:

[bk] = bout*g2t + br*bk;

[ck] = cr*tg;

[t1] = 1gl12%tl + gll + til*bin;

[t2] = 1g22%t2 + g21 + t2+bin;

[tg]l = t1 + t2;

[b1] = br*bl + tgkbl + !r*gl2+tl;
[b2] = br*b2 + tg*b2 + !r*g22+t2;
[bin] = I!bk*bin + br*!bk#*!g2t;
[boutl] = gi2*!ti*bin + bi;

[r11] = al*lsil + lal*si = XOR(al,sl);
[r21] = a2*!s2 + la2*¥s2 = X0R(a2,s2);
[ri2] = r + bout + bin;

[r22] = r + bout + bin;

[bout2] = g22#!t2*bin + b2;

[bout] = boutli*bout + boutl*bout2 + bout2*bout;
[g2t] = g22%g2t + gl2*g22 + gl2+g2t = C(gl2,g22);
[s1] = al*glliktl*xtg + !tgxsl + !gli*sl + !tl*sl;
[s2] = a2+g21l*t2*tg + !tg*s2 + lg2l*s2 + |t2%s2;

Speed-independent design with C-gates (for two bit handlers)

Output from petrify:

[bk_C1] = bout*g2t; [bk_C2] = br;
[ck] = cr+*tg;
[t1_C1] = gl1; [t1_C2]

It1 + 1r12 + lg2t + bin;

[t2_C1] = g21; [t2_C2] = 1t2 + !r22 + !g2t + bin;
[tg]l = t1 + t2;

[b1_C1] = gl2*t1*bin; [b1_C2] = 1!bl + br + ti;
[b2_C1] = g22+%t2*bin; [b2_C2] = 1!b2 + br + t2;
[bin_C1] = br*!bk*!g2t; [bin_C2] = !'bk;

[boutl] = bl + gl2*!tl*bin;

[r11] = lal*sl + al#*!si;

[r12] = r + bout + bin;

[bout2] = b2 + g22*!t2*bin;

[bout_aux_C1] = boutl; [bout_aux_C2] = bout?2
[bout] = bout_aux + bout * tg;

[r21] = l'a2*s2 + a2*!s2;

[r22] = r + bout + bin;

[g2t_C1] = g22; [g2t_C2] = gl12;

[s1_C1] = al*glixtixtg; [s1_C2] = lgii + It1 + ltg + al;

[s2_C1] = al2*g21#t2%tg; [s2_C2] = !'g21 + 't2 + ltg + a2;
& 5 & 5

Remarks on speed-independence

e Transitions of the OR-gate for t¢ must be ack-ed in both b and r
commands

e Neither of BIH is allowed to leave the critical region until ALL of
them completed it — hence synchronisation of g2 on ¢2t

e The last solution allows resetting of the Mutex’'es on (r2,¢2) only
after all b.: are reset — this means a slight delay in latching events
on a. into tz (the latter waits for release of Mutex).

